Chem. 101 Laboratory Fall 2005-06

Lecture 1

Measurement

Purpose

- To become acquainted with the various types of balances and volumetric glassware and to compare their use and precision.
- To develop the technique of using such glassware.
- To learn how to report a measurement to the right precision
- To determine the density of an unknown substance.

Volumetric glassware

Copyright © The MoGraw-Hill Companies, Inc. Permission required for reproduction or display.

Volumetric glassware (cont'd)

- Buret: Calibrated TD (to deliver) at $20^{\circ} \mathrm{C}$. Used to deliver any needed volume.
- Pipet: Calibrated TD (to deliver) at $20{ }^{\circ} \mathrm{C}$. Used to deliver accurately measured volume.
- Graduated cylinder: Calibrated TC (to contain) or TD (to deliver) depending on its intended use.
- Volumetric flask: Calibrated TC (to contain). Used to make up solutions to given volume.

Uncertainty

- In every measurement there is a possibility of experimental error. The margin of error in a given measurement is called the uncertainty on that measurement.
- Uncertainty depends on the measuring tool or instrument.
Example: measurement of the length of a certain rod using two different rulers.
Ruler 1: $\quad 3.7 \pm 0.1 \mathrm{~cm}$
Ruler 2: $\quad 3.69 \pm 0.01 \mathrm{~cm}$
Ruler 2 is more precise.
- The uncertainty is usually given with the instrument, if not, consider it $1 / 10$ of the smallest division.

Uncertainty (cont'd)

$\mathrm{T}=22.0^{\circ} \mathrm{C} \pm 0.1$

(b)

$\mathrm{T}=22.11^{\circ} \mathrm{C} \pm 0.01$

(c)

Examples

Instrument or Tool	Uncertainty	Correct Expression of Measurement
Top loading balance	$\pm 0.01 \mathrm{~g}$	4.01 g
Analytical balance	$\pm 0.0001 \mathrm{~g}$	2.1049 g
10 mL graduated cylinder	$\pm 0.1 \mathrm{~mL}$	6.3 mL
50 mL buret	$\pm 0.02 \mathrm{~mL}$	28.04 mL
25 mL volumetric pipet	$\pm 0.02 \mathrm{~mL}$	25.00 mL
250 mL volumetric flask	$\pm 0.12 \mathrm{~mL}$	250.0 mL

Significant Figures

Definition

All digits required to express a measurement or a calculated result to the proper uncertainty. (A measurement contains significant figures that are all certain digits + one uncertain digit).

Counting Significant Figures:

- In a given number, each digit that appears to the right of the first nonzero digit, including that latter digit, is a significant digit.

Examples:

$$
\begin{aligned}
& 1.3520 \\
& 0.0452 \\
& 9.020 \\
& 56
\end{aligned}
$$

5 sig. fig.
3 sig. fig.
4 sig. fig.
2 sig. fig.

Counting Significant Figures (Cont'd)

- Zeroes to the left of the first nonzero digit and exponents are not significant.
Examples: 0.00502 sig. fig.
$5.00 \times 10^{2} \quad 3$ sig. fig.
$0.01 \times 10^{-4} \quad 1$ sig. fig.
- Exact numbers: Numbers obtained from definitions or by simple counting are considered to have an infinite number of significant figures.

Examples: 25 dollars
60 minutes in one hour
The average of three measured lengths: 6.64, 6.68 and 6.70?

$$
\frac{6.64+6.68+6.70}{3}=6.67333=6.67=7
$$

(3 is an exact number)

Significant figures in mathematical operations

1- Addition and subtraction:
The number of decimal places in the answer is the same as that in the component having the lowest number of decimal places
Examples:

$$
\text { i- } \begin{aligned}
114.65+1.961+12.3 & =128.911 \\
& =128.9 \text { (one decimal place })
\end{aligned}
$$

ii- $66.59-3.113=63.477$
= 63.48 (two decimal places)

2- Multiplication and division

The number of significant figures in the answer is the same as that in the component having the least number of significant figures.

Examples:
i- $8.16 \times 5.1355=41.90568$

$$
=41.9 \text { (3 sig. fig.) }
$$

ii- $0.01540 / 883=0.0000174405$

$$
=1.74 \times 10^{-5} \text { (3 sig. fig.) }
$$

Accuracy and precision

Accuracy - how close a measurement is to the true value Precision - how close a set of measurements are to each other

accurate
\&
precise

precise
but
not accurate

not accurate
\&
not precise

Expression of Error

- Absolute Error = | Exp. Value - True Value |

$$
=\left|X-X_{T}\right|
$$

- Relative Percent Error $=\frac{\left\lfloor\mathbf{X}-\mathbf{X}_{\mathbf{I}} \downarrow\right.}{\mathbf{X}_{\mathbf{T}}} \times 100$

Higher Percent Error indicates lower accuracy

